Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
Small Methods ; : e2400127, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623969

RESUMO

Stabilizing the Zn anode/electrolyte interface is critical for advancing aqueous zinc ion storage technologies. Addressing this challenge helps minimize parasitic reactions and controls the formation of Zn dendrites, which is fundamental to achieving highly reversible Zn electrochemistry. In this study, 2% by volume of dimethyl sulfoxide (DMSO) is introduced into the baseline zinc sulfate (ZS) electrolyte, which acts as an efficient regulator to form a robust solid-electrolyte interphase (SEI) on the Zn anode. This innovative approach enables uniform Zn deposition and does not substantially modify the Zn2+ solvation structure. The Zn||Zn symmetric cell exhibits an extended cycle life of nearly one calendar year (>8500 h) at a current density of 0.5 mA cm-2 and an areal capacity of 0.5 mAh cm-2. Impressive full cell performance can be achieved. Specifically, the Zn||VS2 full cell achieves an areal capacity of 1.7 mAh cm-2, with a superior negative-to-positive capacity ratio of 2.5, and an electrolyte-to-capacity ratio of 101.4 µL mAh-1, displaying remarkable stability over 1000 cycles under a high mass loading of 11.0 mg cm-2 without significant degradation. This innovative approach in electrolyte engineering provides a new perspective on in situ SEI design and furthers the understanding of Zn anode stabilization.

2.
Mater Today Bio ; 26: 101052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38628351

RESUMO

Advanced stages of breast cancer are frequently complicated by bone metastases, which cause significant cancer-related bone destruction and mortality. However, the early precise theranostics of bone metastasis remains a formidable challenge in clinical practice. Herein,a novel all-in-one nanotheranostic system (ABI NYs) combining NIR-II FL/PA dual-modal imaging with photothermal-immunity therapeutic functionalities in one component was designed to precisely localize bone metastasis microscopic lesions and achieve complete tumor ablation at an early stage. The surface modification of the nanosystem with ibandronate (IBN) facilitates both passive and active targeting, significantly improving the detection rate of bone metastasis and suppressing the bone resorption. Superior photothermal performance produces sufficient heat to kill tumor cells while stimulating the upregulation of heat shock proteins 70 (HSP70), which triggers the immunogenic cell death (ICD) effect and the anti-tumor immune response. These all-in-one nanosystems precisely demonstrated early lesion localization in bone metastases and total tumor ablation with a single integration via "one-component, multi-functions" technique. To sum up, ABI NYs, as novel biomineralizing nanosystems integrated with anti-tumor and bone repair, present a synergistic therapy strategy, providing insight into the theranostics of bone metastases and clinical research.

3.
Scand J Immunol ; 99(5): e13362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605563

RESUMO

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Assuntos
Aterosclerose , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Aterosclerose/genética , Células Espumosas/patologia , Citocinas/metabolismo , Interleucina-6/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Granulócitos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38602857

RESUMO

In this paper, we propose a general deep learning training framework XGrad which introduces weight prediction into the popular gradient-based optimizers to boost their convergence and generalization when training the deep neural network (DNN) models. In particular, ahead of each mini-batch training, the future weights are predicted according to the update rule of the used optimizer and are then applied to both the forward pass and backward propagation. In this way, during the whole training period, the optimizer always utilizes the gradients w.r.t. the future weights to update the DNN parameters, making the gradient-based optimizer achieve better convergence and generalization compared to the original optimizer without weight prediction. XGrad is rather straightforward to implement yet pretty effective in boosting the convergence of gradient-based optimizers and the accuracy of DNN models. Empirical results concerning five popular optimizers including SGD with momentum, Adam, AdamW, AdaBelief, and AdaM3 demonstrate the effectiveness of our proposal. The experimental results validate that XGrad can attain higher model accuracy than the baseline optimizers when training the DNN models. The code of XGrad will be available at: https://github.com/guanleics/XGrad.

5.
Adv Sci (Weinh) ; : e2308477, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590138

RESUMO

Developing non-precious-metal electrocatalysts that can operate with a low overpotential at a high current density for industrial application is challenging. Heterogeneous bimetallic phosphides have attracted much interest. Despite high hydrogen evolution reaction (HER) performance, the ordinary oxygen evolution reaction (OER) performance hinders their practical use. Herein, it is shown that Fe-doping reverses and enlarges the interfacial electrical field at the heterojunction, turning the H intermediate favorable binding sites for HER into O intermediate favorable sites for OER. Specifically, the self-supported heterojunction catalysts on nickel foam (CoP@Ni2P/NF and Fe-CoP@Fe-Ni2P/NF) are readily synthesized. They only require the overpotentials of 266 and 274 mV to drive a large current density of 1000 mA cm-2 (j1000) for HER and OER, respectively. Furthermore, a water splitting cell equipped with these electrodes only requires a voltage of 1.724 V to drive j1000 with excellent durability, demonstrating the potential of industrial application. This work offers new insights on interfacial engineering for heterojunction catalysts.

6.
Mater Today Bio ; 26: 101054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38633865

RESUMO

The hypoxic tumor microenvironment (TME) of osteosarcoma (OS) is the Achilles' heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the hypoxia. Herein, we proposed a "reducing expenditure of O2 and broadening sources" dual-strategy and constructed ultrasmall IrO2@BSA-ATO nanogenerators (NGs) for decreasing the O2-consumption and elevating the O2-supply simultaneously. As O2 NGs, the intrinsic catalase (CAT) activity could precisely decompose the overexpressed H2O2 to produce O2 in situ, enabling exogenous O2 infusion. Moreover, the cell respiration inhibitor atovaquone (ATO) would be at the tumor sites, effectively inhibiting cell respiration and elevating oxygen content for endogenous O2 conservation. As a result, IrO2@BSA-ATO NGs systematically increase tumor oxygenation in dual ways and significantly enhance the antitumor efficacy of PDT. Moreover, the extraordinary photothermal conversion efficiency allows the implementation of precise photothermal therapy (PTT) under photoacoustic guidance. Upon a single laser irradiation, this synergistic PDT, PTT, and the following immunosuppression regulation performance of IrO2@BSA-ATO NGs achieved a superior tumor cooperative eradicating capability both in vitro and in vivo. Taken together, this study proposes an innovative dual-strategy to address the serious hypoxia problem, and this microenvironment-regulable IrO2@BSA-ATO NGs as a multifunctional theranostics platform shows great potential for OS therapy.

7.
Front Immunol ; 15: 1337489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566988

RESUMO

Introduction: Chimeric antigen receptor natural killer (CAR-NK) cells have been found to be successful in treating hematologic malignancies and present potential for usage in solid tumors. Methods: In this study, we created CD276-targeted CAR-expressing NK cells from pluripotent stem cells (iPSC CD276-targeted CAR-NK cells) and evaluated their cytotoxicity against esophageal squamous cell carcinoma (ESCC) using patient-specific organoid (PSO) models comprising of both CD276-positive and CD276-negative adjacent epithelium PSO models (normal control PSO, NC PSO) as well as primary culture of ESCC cell models. In addition, in vitro and in vivo models such as KYSE-150 were also examined. iPSC NK cells and NK-free media were used as the CAR-free and NK-free controls, respectively. Results: The positive CD276 staining was specifically detected on the ESCC membrane in 51.43% (54/105) of the patients of all stages, and in 51.35% (38/74) of stages III and IV. The iPS CD276-targeted CAR-NK cells, comparing with the iPS NK cells and the NK-free medium, exhibited specific and significant cytotoxic activity against CD276-positive ESCC PSO rather than CD276-negative NC PSO, and exhibited significant cytotoxicity against CD276-expressing cultured ESCC cells, as well as against CD276-expressing KYSE-150 in vitro and in BNDG mouse xenograft. Discussion: The efficacy of the iPSC CD276-targeted CAR-NK cells demonstrated by their successful treatment of CD276-expressing ESCC in a multitude of pre-clinical models implied that they hold tremendous therapeutic potential for treating patients with CD276-expressing ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/metabolismo , Células Matadoras Naturais , Antígenos B7/metabolismo
8.
J Colloid Interface Sci ; 665: 68-79, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513409

RESUMO

Optimized fabrication of Z-scheme photocatalyst based on MOF materials offers sustainable energy generation and environmental improvement due to their attractive properties. The Z-scheme heterojunctions consisting of UiO-66 cubes covered with Zn0.5Cd0.5S nanoparticles were fabricated by a facile solvothermal method. Thanks to the Z-scheme carrier transport under simulated sunlight irradiation, UiO-66@Zn0.5Cd0.5S exhibited enhanced photocatalytic performance of H2 generation synchronized with organic pollutant degradation in fluoroquinolone antibiotic wastewater. Synergistically, the highest comprehensive performance was obtained in ciprofloxacin solution. The H2 yield reached 224 µmol∙ g-1∙ h-1 and simultaneously the removal efficiency was up to 83.6 %. The degradation pathways revealed that the process of piperazine ring cleavage and decarboxylation also generates H protons, further promoting the production of H2. Therefore, the effective spatial separation and transfer of the photoinduced carriers are attributed to the good band structure, large specific surface area, and cooperative reduction and oxidation reactions of UiO-66@Zn0.5Cd0.5S, resulting in significant photocatalytic activity. The toxicity assessment of antibiotics and intermediate products during the photocatalytic reaction also verifies the reduction of environmental risk. This study highlights a promising way to expand the application of the MOFs-based photocatalyst in clean energy conversion coupling with water remediation.

9.
Eur J Neurosci ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469656

RESUMO

This study aims to analyse hyperechoic substantia nigra (HSN) characteristics and the correlation of HSN with clinical features and blood biomarkers in patients with Parkinson's disease (PD). Transcranial sonography (TCS) evaluations of the substantia nigra (SN) were performed in 40 healthy controls and 71 patients with PD, including patients with SN hyperechogenicity (SN+) and those with normal SN echogenicity (SN-). Evaluation of motor and non-motor symptoms was assessed by a series of rating scales. The uricase method was used to determine serum uric acid (UA) levels, and enzyme-linked immunosorbent assay (ELISA) was used to measure plasma interleukin (IL)-1ß levels. TCS showed 92.50% specificity and 61.97% sensitivity in differentiating PD patients from controls. The area of SN+ contralateral to the side of initial motor symptoms (SNcontra ) was larger than that ipsilateral to the side of initial motor symptoms (SNipsi ). The PDSN+ group had lower Argentine Hyposmia Rating Scale (AHRS) scores and UA levels than the PDSN- group. Binary logistic regression analysis revealed that AHRS scores and UA levels could be independent predictors for HSN. The larger SN echogenic area (SNL ) sizes positively correlated with plasma IL-1ß levels in PD patients with SN+. The present study provides further evidence of the potential of SN echogenicity as an imaging biomarker for PD diagnosis. PD patients with HSN have more severe non-motor symptoms of hyposmia. HSN in PD patients is related to the mechanism of abnormal iron metabolism and microglial activation.

10.
IEEE Trans Image Process ; 33: 2305-2317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470585

RESUMO

Online video streaming has fundamental limitations on the transmission bandwidth and computational capacity and super-resolution is a promising potential solution. However, applying existing video super-resolution methods to online streaming is non-trivial. Existing video codecs and streaming protocols (e.g., WebRTC) dynamically change the video quality both spatially and temporally, which leads to diverse and dynamic degradations. Furthermore, online streaming has a strict requirement for latency that most existing methods are less applicable. As a result, this paper focuses on the rarely exploited problem setting of online streaming video super resolution. To facilitate the research on this problem, a new benchmark dataset named LDV-WebRTC is constructed based on a real-world online streaming system. Leveraging the new benchmark dataset, we propose a novel method specifically for online video streaming, which contains a convolution and Look-Up Table (LUT) hybrid model to achieve better performance-latency trade-off. To tackle the changing degradations, we propose a mixture-of-expert-LUT module, where a set of LUT specialized in different degradations are built and adaptively combined to handle different degradations. Experiments show our method achieves 720P video SR around 100 FPS, while significantly outperforms existing LUT-based methods and offers competitive performance compared to efficient CNN-based methods. Code is available at https://github.com/quzefan/ConvLUT.

11.
Cell Commun Signal ; 22(1): 183, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491517

RESUMO

PURPOSE: Prostatitis is a highly prevalent condition that seriously affects men's physical and mental health. Although epidemiological investigations have provided evidence of a correlation between insufficient sleep and prostatitis, the pathogenesis of prostatitis remains unclear. We sought to identify the underlying mechanism involved and identify a promising therapeutic target. METHODS: Sleep deprivation (SD) was utilized to establish a mouse model of insufficient sleep in a special device. Prostatitis was observed at different time points post-SD. The degree of prostatitis was evaluated by pathological section and behavioural tests. Using immunofluorescence, western blot, and proteomic analyses, the underlying mechanism of SD-related prostatitis was investigated, and the development and therapeutic target of prostatitis were elucidated. RESULTS: SD, as an initial pathological trigger, resulted in a reduction in dihydrotestosterone and melatonin levels. Proteomic analysis revealed that the cGAS-STING pathway may play a significant role in inducing prostatitis. The subsequent results illustrated that the dual reduction in dihydrotestosterone and melatonin led to an accumulation of reactive oxygen species and the release of mitochondrial DNA (mt-DNA). The accumulation of mt-DNA activated the cGAS-STING pathway, which recruited inflammatory cells into the prostatic stroma through the secretion of interferon-ß. Consequently, an inflammatory microenvironment was formed, ultimately promoting the development of prostatitis. Notably, mice with SD-induced prostatitis gradually recovered to a normal state within 7 days of recovery sleep. However, after being subjected to SD again, these mice tended to have a more pronounced manifestation of prostatitis within a shorter timeframe, which suggested that prostatitis is prone to relapse. CONCLUSIONS: The cGAS-STING pathway activated by dual deficiency of dihydrotestosterone and melatonin plays a comprehensive inflammatory role in SD-related prostatitis. This research provides valuable insights into the pathogenesis, therapeutic targets, and prevention strategies of prostatitis.


Assuntos
Melatonina , Prostatite , Humanos , Masculino , Animais , Camundongos , Privação do Sono/complicações , Di-Hidrotestosterona/farmacologia , Proteômica , Sono , DNA Mitocondrial , Nucleotidiltransferases
12.
BMC Vet Res ; 20(1): 110, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500105

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation. RESULTS: Canine AD-MSCs promoted neural functional recovery, reduced neuronal apoptosis, and inhibited the activation of microglia and astrocytes in TBI rats. According to the results in vivo, we further investigated the regulatory mechanism of AD-MSCs on activated microglia by co-culture in vitro. Finally, we found that canine AD-MSCs promoted their polarization to the M2 phenotype, and inhibited their polarization to the M1 phenotype. What's more, AD-MSCs could reduce the migration, proliferation and Inflammatory cytokines of activated microglia, which is able to inhibit inflammation in the central system. CONCLUSIONS: Collectively, the present study demonstrates that transplantation of canine AD-MSCs can promote functional recovery in TBI rats via inhibition of neuronal apoptosis, glial cell activation and central system inflammation, thus providing a theoretical basis for canine AD-MSCs therapy for TBI in veterinary clinic.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Cão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças dos Roedores , Ratos , Animais , Cães , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/veterinária , Microglia , Macrófagos , Inflamação/veterinária , Transplante de Células-Tronco Mesenquimais/veterinária , Transplante de Células-Tronco Mesenquimais/métodos
13.
Int J Biol Macromol ; 263(Pt 2): 130435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408585

RESUMO

Currently, it has long been considered a challenge to provide sustainable additives for polylactide (PLA) in green way to endow it excellent comprehensive properties. Given the flammability and unsatisfactory crystallization performance of PLA, a furan-based phosphate furfurylamine trimethylphosphate (FATMP) was synthesized from 2-furfurylamine and amino trimethylphosphonic acid by a simple hydration reaction, and the PLA/FATMP composites were prepared by melting blending process. The tensile performance, crystallization behaviors, flame retardancy, and flame-retardant mechanism received special attention. Results showed that the incorporation of only 3 wt% FATMP could indeed increase the LOI value of PLA from 19.8 to 27.3 %, and simultaneously acquired V-0 rating in the vertical burning test owing to the favorable synergistic effect between the vapor phase and the condensed phase. Additionally, the half-crystallization time of PLA was decreased from 12.4 to 5.1 mins with the addition of FATMP, which acted as a nucleating agent. More appealingly, the tensile performance of PLA/FATMP composites was also well maintained. In general, the PLA/FATMP composites we proposed could be promising candidates in application fields where favorable flame retardancy and crystallization ability are required.


Assuntos
Organofosfatos , Fosfatos , Poliésteres , Aminoácidos , Furanos
14.
PLoS One ; 19(2): e0296748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315712

RESUMO

This paper presents a multi-algorithm fusion model (StackingGroup) based on the Stacking ensemble learning framework to address the variable selection problem in high-dimensional group structure data. The proposed algorithm takes into account the differences in data observation and training principles of different algorithms. It leverages the strengths of each model and incorporates Stacking ensemble learning with multiple group structure regularization methods. The main approach involves dividing the data set into K parts on average, using more than 10 algorithms as basic learning models, and selecting the base learner based on low correlation, strong prediction ability, and small model error. Finally, we selected the grSubset + grLasso, grLasso, and grSCAD algorithms as the base learners for the Stacking algorithm. The Lasso algorithm was used as the meta-learner to create a comprehensive algorithm called StackingGroup. This algorithm is designed to handle high-dimensional group structure data. Simulation experiments showed that the proposed method outperformed other R2, RMSE, and MAE prediction methods. Lastly, we applied the proposed algorithm to investigate the risk factors of low birth weight in infants and young children. The final results demonstrate that the proposed method achieves a mean absolute error (MAE) of 0.508 and a root mean square error (RMSE) of 0.668. The obtained values are smaller compared to those obtained from a single model, indicating that the proposed method surpasses other algorithms in terms of prediction accuracy.


Assuntos
Algoritmos , Criança , Humanos , Pré-Escolar , Simulação por Computador
15.
Arch Microbiol ; 206(3): 102, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353788

RESUMO

A plant growth hormone indoleacetic acid-producing strain LX3-4T was isolated from a carrot rhizosphere soil sample collected in Shandong Province, China. It is Gram-stain-positive, non-motile, and has irregular short rod-shaped cells. LX3-4T shared high 16S rRNA gene sequence identity with Microbacterium oleivorans DSM 16091T (99.4%), M. testaceum NBRC 12675T (98.6%), M. marinum DSM 24947T (98.5%), M. resistens NBRC 103078T (98.4%), and M. paraoxydans NBRC 103076T (98.3%). Phylogenetic analysis based on the concatenated gene sequences of 16S rRNA gene, housekeeping genes gryB and rpoB also showed the distinction between strain LX3-4T and other Microbacterium species. Furthermore, analysis of the average nucleotide identities (ANI), the average amino acid identity (AAI), and the digital DNA-DNA hybridization (dDDH) values between strain LX3-4T and its relatives revealed that strain LX3-4T represents a distinct species. The genomic DNA G + C content of the strain is 69.5%. It can grow at 25-37 °C (optimum 37 °C), pH 5.0-10.0 (optimum pH 6.0-8.0), and the range of NaCl concentration is 0-7% (w/v) (optimum 1-5%). The colonies on agar plates are smooth, translucent, and pale yellow. The main cellular fatty acids of strain LX3-4T are anteiso-C15:0, anteiso-C17:0, and iso-C16:0. The predominant respiratory quinones are MK-12 and MK-11. Diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid, and an unidentified phosphoglycolipid are major polar lipids. The cell-wall sugar of strain LX3-4T is glucose. The cell-wall peptidoglycan contains glycine, alanine, lysine, and glutamic acid. In addition, this strain carries nitrogen fixation genes and can grow in nitrogen-free medium. Based on the polyphasic data, strain LX3-4T represents a novel species of the genus Microbacterium, for which the name Microbacterium dauci sp. nov. is proposed with strain LX3-4T (= CCTCC AB 2023103T = LMG 33159T) designated as the type strain.


Assuntos
Daucus carota , Hormônio do Crescimento , Reguladores de Crescimento de Plantas , Microbacterium , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Ácidos Indolacéticos , DNA
16.
Small ; : e2312216, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412417

RESUMO

Electrolysis of water has emerged as a prominent area of research in recent years. As a promising catalyst support, copper foam is widely investigated for electrolytic water, yet the insufficient mechanical strength and corrosion resistance render it less suitable for harsh working conditions. To exploit high-performance catalyst supports, various metal supports are comprehensively evaluated, and Ti6 Al4 V (Ti64) support exhibited outstanding compression and corrosion resistance. With this in mind, a 3D porous Ti64 catalyst support is fabricated using the selective laser sintering (SLM) 3D printing technology, and a conductive layer of nickel (Ni) is coated to increase the electrical conductivity and facilitate the deposition of catalysts. Subsequently, Co0.8 Ni0.2 (CO3 )0.5 (OH)·0.11H2 O (CoNiCH) nanoneedles are deposited. The resulting porous Ti64/Ni/CoNiCH electrode displayed an impressive performance in the oxygen evolution reaction (OER) and reached 30 mA cm-2 at an overpotential of only 200 mV. Remarkably, even after being compressed at 15.04 MPa, no obvious structural deformation is observed, and the attenuation of its catalytic efficiency is negligible. Based on the computational analysis, the CoNiCH catalyst demonstrated superior catalytic activity at the Ni site in comparison to the Co site. Furthermore, the electrode reached 30 mA cm-2 at 1.75 V in full water splitting conditions and showed no significant performance degradation even after 60 h of continuous operation. This study presents an innovative approach to robust and corrosion-resistant catalyst design.

18.
Adv Sci (Weinh) ; : e2308905, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419379

RESUMO

The precise theranostics of rheumatoid arthritis (RA) remains a formidable challenge in clinical practice. Exploring novel applications of contemporary therapeutic approaches like chemo-radiotherapy is promising as a highly effective strategy for RA. Herein, a novel activatable nanoradiosensitizer-40 (denoted as IRnR-40) is developed, based on encapsulating the clinically approved drugs cisplatin (DDP) and indocyanine green (ICG) within a gelatin shell to achieve second near-infrared fluorescence (NIR-II FL) imaging-guided safe-dose synergetic chemo-radiotherapy. The high concentration of matrix metalloproteinase-9 (MMP-9) in the RA microenvironment plays a pivotal role in triggering the responsive degradation of IRnR-40, leading to the rapid release of functional molecules DDP and ICG. The released ICG serves the dual purpose of illuminating the inflamed joints to facilitate accurate target volume delineation for guiding radiotherapy, as well as acting as a real-time reporter for quantifying the release of DDP to monitor efficacy. Meanwhile, the released DDP achieves highly effective synergistic chemotherapy and radiosensitization for RA via the dual reactive oxygen species (ROS)-mediated mitochondrial apoptotic pathway. To sum up, this activatable nanoradiosensitizer IRnR-40 is believed to be the first attempt to achieve efficient NIR-II FL imaging-guided safe-dose chemo-radiotherapy for RA, which provides a new paradigm for precise theranostics of refractory benign diseases.

19.
Sci Rep ; 14(1): 2778, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307927

RESUMO

Real-world data on effectiveness and safety of a single non-vitamin K antagonist oral anticoagulant in the Chinese population with atrial fibrillation (AF) are limited. This study reports characteristics of patients treated with edoxaban and factors associated with dosing patterns from routine care in China. ETNA-AF-China (NCT04747496) is a multicentre, prospective, observational study enrolling edoxaban-treated patients from four economic regions with a targeted 2-year follow-up. Of the 4930 patients with AF (mean age: 70.2 ± 9.5 years; male, 57.1%), the mean creatinine clearance (CrCl), CHA2DS2-VASc, and HAS-BLED scores were 71.2 mL/min, 2.9, and 1.6. Overall, 6.4% of patients were perceived as frail by investigators. Available label dose reduction criteria (N = 4232) revealed that 3278 (77.5%) patients received recommended doses and 954 (22.5%) non-recommended doses. Northeast (53.0%) and West (43.1%) regions had the highest prescriptions of 60 mg and 30 mg recommended doses, respectively. Non-recommended 30 mg doses were more frequently prescribed in patients with antiplatelet use and history of heart failure than recommended 60 mg. Multivariate analysis identified advanced age as the strongest associated factor with non-recommended doses. Frailty had the strongest association with 30 mg except for age, and history of TIA was the most relevant factor associated with 60 mg. In conclusion, patients in the ETNA-AF-China study were predominantly aged 65 years and older, had mild-to-moderate renal impairment and good label adherence. Advanced age was associated with non-recommended doses, with frailty most common for non-recommended 30 mg and a history of TIA for the non-recommended 60 mg dose.


Assuntos
Fibrilação Atrial , Fragilidade , Ataque Isquêmico Transitório , Piridinas , Acidente Vascular Cerebral , Tiazóis , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticoagulantes/uso terapêutico , Fibrilação Atrial/complicações , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia , Inibidores do Fator Xa , Fragilidade/complicações , Ataque Isquêmico Transitório/complicações , Estudos Multicêntricos como Assunto , Estudos Observacionais como Assunto , Estudos Prospectivos , Sistema de Registros , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/complicações
20.
J Neurosci Res ; 102(2): e25303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361408

RESUMO

Lipocalin-2 (LCN2) is essential for the regulation of neuroinflammation and cellular uptake of iron. This study aimed to evaluate plasma LCN2 levels and explore their correlation with clinical and neuroimaging features in Parkinson's disease (PD) patients. Enzyme-linked immunosorbent assay (ELISA) was used to measure plasma LCN2 levels in 120 subjects. Evaluation of motor symptoms and nonmotor symptoms in PD patients was assessed by the associated scales. Voxel-based morphometry (VBM) was used to evaluate brain volume alterations, and quantitative susceptibility mapping (QSM) was used to quantitatively analyze brain iron deposition in 46 PD patients. Plasma LCN2 levels were significantly higher in PD patients than those in healthy controls. LCN2 levels were negatively correlated with Montreal Cognitive Assessment (MoCA) scores, total brain gray matter volume (GMV), and GMV/total intracranial volume (TIV) ratio, but positively correlated with Hamilton Anxiety Rating Scale (HAMD) scores and mean QSM values of the bilateral substantial nigra (SN). Receiver operating characteristic (ROC) curves confirmed that plasma LCN2 levels had good predictive accuracy for PD. The results suggest that plasma LCN2 levels have potential as a biomarker for the diagnosis of PD. LCN2 may be a therapeutic target for neuroinflammation and brain iron deposition.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Lipocalina-2 , Doenças Neuroinflamatórias , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...